Page 141 - E-Waste
P. 141

C       1        2       3       4       5        6
                                                                                                       137






                      171.  A. Schippers, P.-G. Jozsa, W. Sand, Sulfur chemistry in bacterial leaching of pyrite, Appl. Environ.
                           Microbiol. 62 (9) (1996) 3424–3431.
                      172. W. Sand, K. Rohde, B. Sobotke, et al., Evaluation of Leptospirillum ferrooxidans for leaching,
                           Appl. Environ. Microbiol. 58 (1992) 85–92.
                      173. I.Suzuki, Microbial leaching of metals from sulfide minerals, Biotechnol. Adv. 19 (2) (2001) 119–132.

                      174. W. Sand, T. Gehrke, P.-G. Jozsa, et al., (Bio)chemistry of bacterial leaching – direct vs. indirect
                           bioleaching, Hydrometallurgy 59 (2–3) (2001) 159–175.
                      175. A. Schippers, T. Rohwerder, W. Sand, Intermediary sulfur compounds in pyrite oxidation: implications
                           for bioleaching and biodepyritization of coal, Appl. Microbiol. Biotechnol. 52 (1) (1999) 104–110.
                      176. A. Schippers, W. Sand, Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via
                           thiosulfate or via polysulfides and sulfur, Appl. Environ. Microbiol. 65 (1) (1999) 319–321.
                      177. W. Sand, T. Gehrke, R. Hallmann, et al., Sulfur chemistry, biofilm, and the (in) direct attack mecha-
                           nism – a critical evaluation of bacterial leaching, Appl. Microbiol. Biotechnol. 43 (1995) 961–966.
                      178. G.J. Olson, J.A. Brierley, C.L. Brierley, Progress in bioleaching: applications of microbial processes
                           by the minerals industries, Appl. Microbiol. Biotechnol. 63 (3) (2003) 249–257.
                      179. K. Bosecker, Bioleaching: metal solubilization by microorganisms, FEMS Microbiol. Rev. 20 (1997)
                           591–604.
                      180. K. Tempel, Commercial biooxidation challenges at Newmont’s Nevada operations, in 2003 SME
                           Annual Meeting, Littleton, Colo, 2003, Preprint 03-067.
                      181.  S. Ilyas, M.A. Anwar, S.B. Niazi, et al., Bioleaching of metals from electronic scrap by moderately
                           thermophilic acidophilic bacteria, Hydrometallurgy 88 (1–4) (2007) 180–188.
                      182. M.-S. Choi, K.-S. Cho, D.-S. Kim, et al., Microbial recovery of copper from printed circuit boards
                           of waste computer by Acidithiobacillus ferrooxidans, J. Environ. Sci. Health – Part A Toxic/Hazard.
                           Subst. Environ.Eng. 39 (11–12) (2004) 2973–2982.
                      183. C. Mack, B.Wilhelmi, J.R. Duncan, et al., Biosorption of precious metals, Biotechnol. Adv. 25 (3)
                           (2007) 264–271.
                      184. G.M. Gadd, Bioremedial potential of microbial mechanisms of metal mobilization and immobilization,
                           Curr. Opin. Biotechnol. 11 (3) (2000) 271–279.

                      185. C. White, S.C. Wilkinson, G.M. Gadd, The role of microorganisms in biosorption of toxic metals and
                           radionuclides, Int. Biodeterioration Biodegrad. 35 (1–3) (1995) 17–40.

                      186. E. Torres, Y.N. Mata, M.L. Bl´azquez, et al., Gold and silver uptake and nanoprecipitation on calcium
                           alginate beads, Langmuir 21 (17) (2005) 7951–7958.
   136   137   138   139   140   141   142   143   144   145   146